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Abstract

The transient mode localization phenomenon is considered in a mechanical model combining a simply supported beam

and transverse nonlinear springs with hardening characteristics. Two different approaches to the model reduction, such as

normal and local mode representations for the beam’s center line, are discussed. It is concluded that the local mode

discretization brings advantages for the transient localization analysis. Based on the specific coordinate transformations

and the idea of averaging, explicit equations describing the energy exchange between the local modes and the

corresponding localization conditions are obtained. It was shown that when the energy is slowly pumped into the system

then, at some point, the energy equipartition around the system suddenly breaks and one of the local modes becomes the

dominant energy receiver. The phenomenon is interpreted in terms of the related phase-plane diagram which shows

qualitative changes near the image of the out-of-phase mode as the total energy of the system has reached its critical level.

A simple closed form expression is obtained for the corresponding critical time estimate.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of nonlinear local modes was introduced in molecular physics several decades ago; see for
instance Refs. [1,2] and the original references therein. Different interpretations and literature overviews from
the standpoints of theoretical mechanics and mechanical engineering can be found in Refs. [3,4].

The nonlinear localization phenomenon develops at high-energy levels whereas the low-energy dynamics
represents a superposition of normal modes usually with few dominant modes. It is shown below that, as the
total energy of the system slowly increases then, at some point, a spontaneous dynamic transition from normal
to local modes may occur. In order to describe such transitions and determine the corresponding critical
conditions, an analytical tool is introduced through specific coordinate transformations and the idea of
averaging. More introductory comments and references are given in the main text after the related equations
have been derived.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Finally, we note that the major complicating factor of such transient analyses has a geometrical nature.
Indeed, the transition from normal to local modes is associated with a switch from one natural basis to
another. This issue is discussed in detail in Section 3 of this paper. Then Sections 4 and 5 describe the
analytical stages of the dynamic analysis. Below, Section 2 introduces the mechanical model chosen for
illustration.

2. System description

The model under investigation represents a simply supported elastic beam of length l with two masses
attached to the beam and connected to the base by nonlinear springs; see Fig. 1. The corresponding
differential equation of motion and boundary conditions are, respectively,

rA
q2w

qt2
þ EI

q4w
qy4
¼ f 1ðtÞdðy� y1Þ þ f 2ðtÞdðy� y2Þ (1)

and

wðt; yÞjy¼0;l ¼ 0;
q2wðt; yÞ

qy2

����
y¼0;l

¼ 0 (2)

where

f iðtÞ ¼ �f ½wðt; yiÞ� � c
qwðt; yiÞ

qt
�m

q2wðt; yiÞ

qt2
; i ¼ 1; 2 (3)

are transverse forces applied to the beam from masses attached at the two points y ¼ y1;2.
It will be assumed that the model is perfectly symmetric with respect to y ¼ l=2 so that the springs are

attached at points

y1 ¼ l=3 and y2 ¼ 2l=3 (4)

Below we consider the case of the hardening restoring force characteristics of the springs and show that,
under appropriate conditions, a slow energy in-flow leads to the localization of vibration modes. As a result,
w

F u1 (t)

u2 (t)

y1 = 1
3 l

y2 =

y = l

2
3 l

�
�

y

Fig. 1. The mechanical model admitting both normal and local mode motions; all the springs have hardening restoring force

characteristics.
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the system energy is spontaneously shifted to either the left or right side of the beam—the symmetry break.
The adiabatically ‘slow’ energy increase means that the energy source has a minor or no direct effect on the
mode shapes. For simulation purposes, such an energy in-flow is provided by the assumption that the viscous
damping coefficient c is sufficiently small and negative; the physical basis for such an assumption was
discussed in previous work [5]. This remark, which is substantiated below by the corresponding numerical
values of the parameters, is important to follow, otherwise the phenomenon, which is the focus of this paper,
may not be developed. In contrast, the dissipation ðc40Þ can lead to a spontaneous dynamic transition from
local to normal modes, when the total energy reaches its sub-critical level.

Note that the presence of Dirac d-functions in Eq. (1) requires a generalized interpretation of the differential
equation of motion in terms of distributions [6]. The corresponding compliance is provided by further model
reduction based on the Bubnov–Galerkin approach, which actually switches from the point-wise to integral
interpretation of equations.
3. Normal and local mode coordinates

Normal mode coordinates. Let us evaluate two possible ways to discretizing model (1). In this paper, the
reduced-order case of two degrees-of-freedom is considered, when the conventional normal mode
representation for the boundary value problem (1) and (2) is

wðt; yÞ ¼W 1ðtÞ sin
py

l
þW 2ðtÞ sin

2py

l
(5)

Substituting Eq. (5) in Eq. (1) and applying the standard Bubnov–Galerkin procedure, gives, after dropping
the time arguments,

€W 1 þ z̄ _W 1 þ l2W 1 þ F ðW 1 þW 2Þ þ F ðW 1 �W 2Þ ¼ 0

€W 2 þ z̄ _W 2 þ 16l2W 2 þ F ðW 1 þW 2Þ � F ðW 1 �W 2Þ ¼ 0 (6)

where

z̄ ¼
3c

3mþ Alr
; l2 ¼

p4EI

l3ð3mþ AlrÞ
(7)

and

F ðzÞ ¼

ffiffiffi
3
p

3mþ Alr
f

ffiffiffi
3
p

2
z

� �
(8)

are constant parameters and a re-scaled restoring force function, respectively.
Eqs. (6) are decoupled in the linear terms related to the elastic beam center line, whereas the modal coupling

is due to the spring nonlinearities included in F ðzÞ.
Local mode coordinates. Alternatively, the model can be discretized by introducing the ‘local mode’

coordinates determined by the spring locations

uiðtÞ ¼ wðt; yiÞ; i ¼ 1; 2 (9)

Taking into account Eqs. (4) and (5), and substitution in Eq. (9) reveals simple links between the normal
and local coordinates as

u1 ¼

ffiffiffi
3
p

2
ðW 1 þW 2Þ; u2 ¼

ffiffiffi
3
p

2
ðW 1 �W 2Þ (10)

or, inversely,

W 1 ¼

ffiffiffi
3
p

3
ðu1 þ u2Þ; W 2 ¼

ffiffiffi
3
p

3
ðu1 � u2Þ (11)
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Substituting Eq. (11) in Eq. (5) gives the ‘local mode expansion’ for the beam’s center line

wðt; yÞ ¼ u1ðtÞc1

py

l

� �
þ u2ðtÞc2

py

l

� �
(12)

where the local mode shape functions are

c1ðxÞ

c2ðxÞ

" #
¼

ffiffiffi
3
p

3

1 1

1 �1

� 	
sin x

sin 2x

� 	
(13)

Both normal and local mode shape functions are shown in Figs. 2 and 3, respectively. Transformation (13)
can be generalized for a greater number of modes. Note that functions (13) satisfy the following orthogonality
condition: Z p

0

ciðxÞcjðxÞdx ¼
p
3
dij (14)

where dij is the Kronecker symbol.
However, the differential equations of motion for u1ðtÞ and u2ðtÞ are obtained directly by substituting

Eq. (11) in Eq. (6) and making obvious algebraic manipulations that gives

€u1 þ z̄ _u1 þ ðl
2=2Þð17u1 � 15u2Þ þ

ffiffiffi
3
p

F ð2u1=
ffiffiffi
3
p
Þ ¼ 0

€u2 þ z̄ _u2 � ðl
2=2Þð15u1 � 17u2Þ þ

ffiffiffi
3
p

F ð2u2=
ffiffiffi
3
p
Þ ¼ 0 (15)

This kind of discretization seems to be similar to that given by the finite element approaches.
1
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x
�

Fig. 2. Normal mode shape functions; here and below dashed lines correspond to second mode.
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Fig. 3. Local mode shape functions.
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Further, Eq. (15) are represented as a set of first-order equations

_u1 ¼ v1

_u2 ¼ v2

_v1 ¼ �o2u1 þ e½o2u2 � zv1 � pðu1Þ�

_v2 ¼ �o2u2 þ e½o2u1 � zv2 � pðu2Þ� (16)

where

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ

17

2
l2

r
; k ¼ F 0ð0Þ; e ¼

15

2

l
o

� �2

; z ¼
z̄
e

and

pðuiÞ ¼

ffiffiffi
3
p

e
F

2
ffiffiffi
3
p

3
ui

� �
�

2
ffiffiffi
3
p

3
kui

� 	
¼ bu3

i

are new constant parameters and the nonlinear component of the spring characteristic; it is assumed that the
damping coefficient and the nonlinear component are small enough to provide the order of magnitude
z ¼ Oð1Þ and pðuiÞ ¼ Oð1Þ.

For calculation purposes, the spring characteristic is taken in the form F ðuÞ ¼ uþ ð4=3Þu3 which brings the
nonlinearity parameter b to the form

b ¼
64o2

135l2
(17)

Eqs. (15), and analogously Eq. (16), possess advantages for transient analysis because the corresponding
linearized system has the same natural frequencies and the nonlinear components are decoupled. As a result,
the one-frequency perturbation tool becomes applicable. The corresponding amplitude-phase variables are
introduced as follows:

ui ¼ aiðtÞ cos½otþ diðtÞ�

vi ¼ �oaiðtÞ sin½otþ diðtÞ� ði ¼ 1; 2Þ (18)

Substituting Eq. (18) in Eq. (16) and applying the averaging procedure with respect to the fast phase z ¼ ot,
gives

_a1 ¼ �
e
2
½za1 þ oa2 sinðd1 � d2Þ�

_a2 ¼ �
e
2
½za2 � oa1 sinðd1 � d2Þ�

_d1 ¼ �
eo
2

a2
a1

cosðd1 � d2Þ þ
3eb
8o

a21

_d2 ¼ �
eo
2

a1
a2

cosðd1 � d2Þ þ
3eb
8o

a22 (19)

The result of the work of Ref. [5] as well as further analysis show that the localization may occur as the
system vibrates in the out-of-phase mode, u1ðtÞ � �u2ðtÞ. In order to investigate the dynamics near the out-of-
phase vibration mode, let us introduce three new variables s, r and y,

a1 ¼ �sðtÞ þ rðtÞ

a2 ¼ sðtÞ þ rðtÞ

d2 ¼ d1 þ DðtÞ (20)
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where s and r characterize the amplitudes of the out-of-phase and in-phase modes, respectively, and D is a
phase shift between the local modes so that the variables r and D describe small deviations from the out-of-
phase mode.

Substituting Eq. (20) in Eq. (19), linearizing the result with respect to r and D and then eliminating the
phase variable D, gives

€rþ ez _rþ e2ðo2 þ 1
4
z2 � 3

4
bs2Þr ¼ 0 (21)

whereas the equation obtained for s gives the solution

s ¼ s0 expð�
1
2
eztÞ (22)

In the case jzj51, Eq. (21) describes an oscillator with a slowly varying frequency. Making the frequency
‘frozen’ enables one of the determining roots of the corresponding ‘characteristic equation’ to be obtained

k1;2 ¼ e �1
2z� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � 3

4bs2
q� �

(23)

If the viscosity is negative, zo0, then Eqs. (21)–(23) qualitatively describe the transition to the local mode as
the system energy increases. In particular, expression (23) shows that when the amplitude of the out-phase
mode, which is associated with s, becomes large enough then the amplitude of the in-phase mode, r, loses its
oscillatory character and grows monotonically.

As a result, one of the local mode increases its amplitude, whereas another one decays; see expressions (20).
This is an onset of the dynamic transition to a localized mode. The corresponding critical time follows from
explicit solution of Eqs. (22) and (23)

t� ¼
1

ejzj
ln

4o2

3bs20
(24)

In order to provide numerical evidence for the dynamic transition from normal to local mode vibrations, let
us introduce an indicator of the energy partition calculated as

P ¼
E1 � E2

E1 þ E2
¼

�1 if E1 ¼ 0 and E2a0

0 if E1 ¼ E2

1 if E1a0 and E2 ¼ 0

8><
>: (25)

where Ei ¼ ðv
2
i þ o2u2

i Þ=2 is the total energy of i-th oscillator under the condition e ¼ 0.
Quantity (25) is varying within the interval �1pPp1. The ends of the interval obviously correspond to the

local modes, whereas its center P ¼ 0 corresponds to the normal modes.
The time history of the energy partition (25) is illustrated in Fig. 4. The following parameters were taken for

numerical simulations: l ¼ 0:05, z̄ ¼ �0:002, k ¼ 1:0, o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ ð17=2Þl2

q
¼ 1:4217, b ¼ 32=ð9eÞ ¼ 383:29,
1
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Fig. 4. ‘Sudden’ transition from normal to local mode vibration as the system energy has reached its critical value.
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e ¼ 15ðl=oÞ2=2, and therefore z ¼ z̄=e ¼ �0:2156. The initial normal mode amplitudes at zero velocities are
W 1ð0Þ ¼ 0:0001 and W 2ð0Þ ¼ �0:003. The critical time estimate based on expression (24) t� ¼ 3474:29 is in
quite a good match with Fig. 4.
4. Local mode interaction dynamics

Let us introduce new variables, K , y and D, as follows:

a1 ¼
ffiffiffiffiffiffiffiffiffi
KðtÞ

p
cos

1

2
yðtÞ þ

p
4

� 	

a2 ¼
ffiffiffiffiffiffiffiffiffi
KðtÞ

p
sin

1

2
yðtÞ þ

p
4

� 	
(26)

D ¼ d2 � d1 þ p (27)

Further, considering the local mode total energies Ei under no interaction condition, and taking into
account Eqs. (18), (26) and (28), gives

Ei ¼
1
2
ðv2i þ o2u2

i Þ; i ¼ 1; 2 (28)

E ¼ E1 þ E2 ¼
1
2o

2ða21 þ a22Þ ¼
1
2o

2K (29)

DE ¼ E1 � E2 ¼
1
2
o2ða21 � a22Þ ¼ �

1
2
o2K sin y (30)

The variable K therefore is proportional to the total energy of the degenerated system, whereas the phase
angle y characterizes the energy partition between the local modes (25) as follows:

P ¼
DE

E
¼ � sin y (31)

The third variable (27) describes the phase shift in the high-frequency vibrations between the local modes so that
D ¼ 0 corresponds to the out-phase motions of the masses attached to the beam; note the difference with Eq. (20).

Differentiating Eqs. (27), (29) and (30), and enforcing Eq. (19), gives

dk
dt1
¼ �

z
o
k

dy
dt1
¼ sinD

dD
dt1
¼ � cosD tan yþ k sin y (32)

where t1 ¼ eot is a new temporal argument, and

k ¼
3b
8o2

K (33)

In the conservative case, z ¼ 0, the first equation in Eq. (32) gives the energy integral k ¼ const:, whereas
another two equations admit the integral

G ¼ � cosD cos yþ 1
4
k cos 2y ¼ const. (34)

This particular case matches the results obtained for a linearly coupled set of Duffing’s oscillators in Ref. [7],
and later reproduced in Ref. [8], however, by means of different complex variable approaches. In particular,
it was shown in Ref. [8] that the last two equations in Eq. (32) are equivalent to a strongly nonlinear
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conservative oscillator

d2y
dt21
þ G2 tan y

cos2 y
¼ 0 (35)

as k! 0.
Oscillator (35) appears to be exactly solvable with general solution

y ¼ arcsin½sin y0 sinðjGjt1= cos y0Þ� (36)

where y0 is the amplitude and another arbitrary constant can be introduced as a temporal shift.
Note that oscillator (35) was considered by Nesterov [9] as a phenomenological model for quite different

kinds of problem. Since no direct physical meaning of such a unique ‘restoring force characteristic’ was found,
the fact of exact solvability not attracted much attention for quite a long time.

In the case ka0, but still z ¼ 0, some perturbation occurs on the right-hand side of Eq. (35); the
corresponding perturbation tool based on the action-angle variables was introduced in Ref. [8].

Let us show now that Eq. (32) can describe the transition to local modes under the assumption of small
negative viscosity

jz=oj51 and zo0 (37)

Under condition (37), the factor k in the third equation of Eq. (32) can be viewed as a slowly growing quasi-
constant. In this case, making k ‘frozen’ and linearizing the last two equations in Eq. (32) near the equilibrium
ðy;DÞ ¼ ð0; 0Þ, gives

d2y
dt21
þ ð1� kÞy ¼ 0 (38)

Note that small y and D bring the original system close to the out-of-phase vibration mode as follows from
Eqs. (31) and (27). When the growing energy parameter k passes the critical point k ¼ 1, the type of
equilibrium is changing from a focus to a saddle point and thus the variable y becomes exponentially growing.
Practically, however, the exponential growth will be suppressed by the nonlinearity. As a result two limit phase
trajectories (separatrix loops) occur around two new stable equilibrium points. These two points represent two
new stable modes of the original system—local modes. The phase-plane diagrams for sub- and super-critical
4

2
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-1.5 -1 -0.5 0 0.5 1 1.5
�

Δ
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out-of-phase
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Fig. 5. Phase-plane structure at under-critical system energy, k ¼ 0:5.
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energy levels are shown in Figs. 5 and 6, respectively. Note that the equilibrium subjected to such qualitative
change corresponds to the out-of-phase vibration mode of the model, whereas another two equilibrium points,
ðy;DÞ ¼ ð0;�pÞ, correspond to the same in-phase mode and remain stable. Therefore, out-of-phase vibrations
appear to be less favorable to energy equipartition as the energy reaches its critical level. Note that links
between localization and the presence of limit phase trajectories was discussed also in Ref. [7] based on the
system of two coupled Duffing oscillators. In particular, the limit phase trajectories were interpreted as
nonlinear beats of infinitely long period, keeping the energy near one of the two oscillators.

As follows from expression (31), the growth of y increases the energy unbalance between the local modes,
and that is onset of the mode localization. The corresponding critical time, at which the localization begins, is
obtained from Eq. (33) as follows:

3b
8o2

K0 expðejzjt�Þ ¼ 1¼)t� ¼
1

ejzj
ln

8o2

3bK0
(39)

As follows from Eqs. (20) and (29), K0 ¼ 2ðs20 þ r20Þ therefore, under the condition r2051, expressions (24)
and (39) give the same result.

5. Concluding remarks

In this paper, the phenomenon of dynamic transition from normal to local nonlinear modes was illustrated
on a simply supported beam-spring model.

However, the developed analytical approach, describing the local mode interaction in terms of the energy
and phase shift variables, appears to be independent of the individual features of the illustrating model and
this can be used in other similar cases.

Compared to the previous publications [7,8] introducing the same set of descriptive variables, K , y and D,
current work has distinctive features as follows:
(1)
 Instead of general mass-spring models, an elastic beam supported by nonlinear springs is considered in this
work. This provides clear interpretations for both the normal and local modes through the corresponding
shape functions of the beam center line.
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(2)
 Instead of using a quite complicated system reduction in terms of complex coordinates, it is shown that the
same result can be achieved by means of a traditional set of amplitude-phase variables, and the standard
one-frequency averaging procedure.
(3)
 The non-conservative case is considered in order to describe qualitative changes in the dynamics as the
total energy of the system adiabatically increases or decreases. Based on such a generalization, new
quantitative and qualitative results are obtained.
In particular, explicit expressions have been obtained for the critical time at which onset of the localization
occurs. The phenomenon is explained in terms of the related phase-plane diagram subjected to a qualitative
change (center-saddle transition) as the total energy of the system reaches its critical level.
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